68 research outputs found

    Discrete complex analysis on planar quad-graphs

    Get PDF
    We develop a linear theory of discrete complex analysis on general quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph yields more instructive proofs of discrete analogs of several classical theorems and even new results. We provide discrete counterparts of fundamental concepts in complex analysis such as holomorphic functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss discrete versions of important basic theorems such as Green's identities and Cauchy's integral formulae. For the first time, we discretize Green's first identity and Cauchy's integral formula for the derivative of a holomorphic function. In this paper, we focus on planar quad-graphs, but we would like to mention that many notions and theorems can be adapted to discrete Riemann surfaces in a straightforward way. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths, we construct a discrete Green's function and discrete Cauchy's kernels with asymptotics comparable to the smooth case. Further restricting to the integer lattice of a two-dimensional skew coordinate system yields appropriate discrete Cauchy's integral formulae for higher order derivatives.Comment: 49 pages, 8 figure

    Inverse spectral problems for Dirac operators with summable matrix-valued potentials

    Full text link
    We consider the direct and inverse spectral problems for Dirac operators on (0,1)(0,1) with matrix-valued potentials whose entries belong to Lp(0,1)L_p(0,1), p[1,)p\in[1,\infty). We give a complete description of the spectral data (eigenvalues and suitably introduced norming matrices) for the operators under consideration and suggest a method for reconstructing the potential from the corresponding spectral data.Comment: 32 page

    Approximation of conformal mappings using conformally equivalent triangular lattices

    Get PDF
    Consider discrete conformal maps defined on the basis of two conformally equivalent triangle meshes, that is edge lengths are related by scale factors associated to the vertices. Given a smooth conformal map ff, we show that it can be approximated by such discrete conformal maps fϵf^\epsilon. In particular, let TT be an infinite regular triangulation of the plane with congruent triangles and only acute angles (i.e.\ <π/2<\pi/2). We scale this tiling by ϵ>0\epsilon>0 and approximate a compact subset of the domain of ff with a portion of it. For ϵ\epsilon small enough we prove that there exists a conformally equivalent triangle mesh whose scale factors are given by logf\log|f'| on the boundary. Furthermore we show that the corresponding discrete conformal maps fϵf^\epsilon converge to ff uniformly in C1C^1 with error of order ϵ\epsilon.Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some proofs extende

    Spin interfaces in the Ashkin-Teller model and SLE

    Full text link
    We investigate the scaling properties of the spin interfaces in the Ashkin-Teller model. These interfaces are a very simple instance of lattice curves coexisting with a fluctuating degree of freedom, which renders the analytical determination of their exponents very difficult. One of our main findings is the construction of boundary conditions which ensure that the interface still satisfies the Markov property in this case. Then, using a novel technique based on the transfer matrix, we compute numerically the left-passage probability, and our results confirm that the spin interface is described by an SLE in the scaling limit. Moreover, at a particular point of the critical line, we describe a mapping of Ashkin-Teller model onto an integrable 19-vertex model, which, in turn, relates to an integrable dilute Brauer model.Comment: 12 pages, 6 figure

    Bond percolation on isoradial graphs: criticality and universality

    Full text link
    In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star-triangle transformation, by transporting the box-crossing property across the family of isoradial graphs. As a consequence, we obtain the universality of these models at the critical point, in the sense that the one-arm and 2j-alternating-arm critical exponents (and therefore also the connectivity and volume exponents) are constant across the family of such percolation processes. The isoradial graphs in question are those that satisfy certain weak conditions on their embedding and on their track system. This class of graphs includes, for example, isoradial embeddings of periodic graphs, and graphs derived from rhombic Penrose tilings.Comment: In v2: extended title, and small changes in the tex

    Universal finite size corrections and the central charge in non solvable Ising models

    Full text link
    We investigate a non solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength \lambda. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all 0<\lambda<\lambda_0 and \lambda_0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.Comment: 43 pages, 1 figur

    Conformal Curves in Potts Model: Numerical Calculation

    Full text link
    We calculated numerically the fractal dimension of the boundaries of the Fortuin-Kasteleyn clusters of the qq-state Potts model for integer and non-integer values of qq on the square lattice. In addition we calculated with high accuracy the fractal dimension of the boundary points of the same clusters on the square domain. Our calculation confirms that this curves can be described by SLEκ_{\kappa}.Comment: 11 Pages, 4 figure

    Critical domain walls in the Ashkin-Teller model

    Full text link
    We study the fractal properties of interfaces in the 2d Ashkin-Teller model. The fractal dimension of the symmetric interfaces is calculated along the critical line of the model in the interval between the Ising and the four-states Potts models. Using Schramm's formula for crossing probabilities we show that such interfaces can not be related to the simple SLEκ_\kappa, except for the Ising point. The same calculation on non-symmetric interfaces is performed at the four-states Potts model: the fractal dimension is compatible with the result coming from Schramm's formula, and we expect a simple SLEκ_\kappa in this case.Comment: Final version published in JSTAT. 13 pages, 5 figures. Substantial changes in the data production, analysis and in the conclusions. Added a section about the crossing probability. Typeset with 'iopart

    Discrete conformal maps: boundary value problems, circle domains, Fuchsian and Schottky uniformization

    Get PDF
    We discuss several extensions and applications of the theory of discretely conformally equivalent triangle meshes (two meshes are considered conformally equivalent if corresponding edge lengths are related by scale factors attached to the vertices). We extend the fundamental definitions and variational principles from triangulations to polyhedral surfaces with cyclic faces. The case of quadrilateral meshes is equivalent to the cross ratio system, which provides a link to the theory of integrable systems. The extension to cyclic polygons also brings discrete conformal maps to circle domains within the scope of the theory. We provide results of numerical experiments suggesting that discrete conformal maps converge to smooth conformal maps, with convergence rates depending on the mesh quality. We consider the Fuchsian uniformization of Riemann surfaces represented in different forms: as immersed surfaces in \mathbb {R}^{3}, as hyperelliptic curves, and as \mathbb {CP}^{1} modulo a classical Schottky group, i.e., we convert Schottky to Fuchsian uniformization. Extended examples also demonstrate a geometric characterization of hyperelliptic surfaces due to Schmutz Schaller

    The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case

    Full text link
    We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case.Comment: 26 pages. Changes in the presentation of some result
    corecore